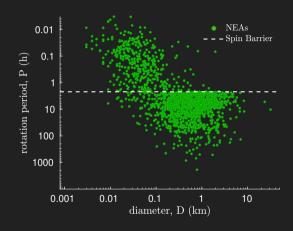
The low thermal conductivity of the super-fast rotator (499998) 2011 PT

M. Fenucci¹, B. Novaković¹, D. Vokrouhlický², R. J. Weryk³

¹University of Belgrade, ²Charles University, ³University of Hawaii

7th Planetary Defense Conference 26 - 30 April 2021

Marco Fenucci (@OnFenu) 1 / 7


Motivation

It is supposed that:

- Small and fast rotators are monolithic objects
- Rocky monoliths have high thermal inertia
- High thermal inertia makes the Yarkovsky effect less effective

However:

 Del Vigna et al. 2018 and Greenberg et al. 2020 found small objects with fast Yarkovsky drift

Marco Fenucci (@OnFenu) 2 / 7

Case study: (499998) 2011 PT

Characteristics:

- $H \sim 24 \text{ mag} \Rightarrow D \sim 35 \text{ m}$
- $P \sim 11 \text{ min}$
- Yarkovsky effect detected by
 - Del Vigna et al. 2018
 - Greenberg et al. 2020
 - JPL SBDB

Goal:

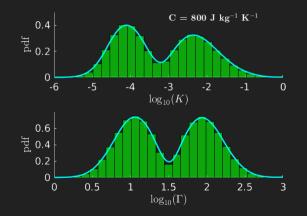
 Constrain the thermal conductivity (thermal inertia)

Marco Fenucci (@OnFenu) 3 / 7

Methods: model vs. observed Yarkovsky drift

$$\left(\frac{\mathbf{d}\mathbf{a}}{\mathbf{d}\mathbf{t}}\right)\left(\mathbf{a}, \mathbf{D}, \rho, \mathbf{K}, \mathbf{C}, \gamma, \mathbf{P}, \alpha, \varepsilon\right) = \left(\frac{\mathbf{d}\mathbf{a}}{\mathbf{d}\mathbf{t}}\right)_{\mathsf{m}}$$

Parameters:


- a semimajor axis
- **D** diameter
- ρ density
- K thermal conductivity
- C heat capacity
- γ obliquity
- P rotation period

Method:

- Assume distributions for all the parameters but K
- Solve for K the model vs. observed equation
- Use a Monte Carlo method for statistical analysis

Marco Fenucci (@OnFenu) 4 / 7

Results of the Monte Carlo simulations

- The distributions are always bimodal
- First peak in K at around

$$\sim \mathbf{7} \cdot \mathbf{10^{-5}} \; \mathsf{W} \; \mathsf{m}^{-1} \; \mathsf{K}^{-1}$$

ullet Second peak in K at around

$$\sim \mathbf{5} \cdot \mathbf{10^{-3}} \; \mathsf{W} \; \mathsf{m}^{-1} \; \mathsf{K}^{-1}$$

• $P(K < 0.1 \text{ W m}^{-1} \text{ K}^{-1}) > 0.95$

Marco Fenucci (@OnFenu) 5 / 7

Comparison with other asteroids

The estimated thermal inertia for 2011 PT is

$$11^{+7}_{-5}$$
 and 88^{+90}_{-45}

Low thermal inertia is usually associated to **regolith**

Asteroid	D (km)	Γ (J m ⁻² K ⁻¹ s ^{-1/2})
Ceres	923	10 ± 10
Pallas	544	10 ± 10
Vesta	525	20 ± 15
Eros	17	150 ± 50
1950 DA	1.3	24 ± 20
Ryugu	0.87	225 ± 45
Bennu	0.49	310 ± 70
Itokawa	0.32	700 ± 200

Marco Fenucci (@OnFenu) 6 / 7

Conclusions

- First evidence supporting the hypothesis that regolith can be retained on small and super-fast rotators (Sanchez & Scheeres 2019, Icarus)
- Large rocky boulders with low thermal inertia were found on Bennu and Ryugu.
 However, 2011 PT is an E-type asteroid.
- 2011 PT might be a rubble-pile, but it is highly unexpected

Future works and opened questions

- More studies and characterization of asteroids with $D < 100 \,$ m are needed for the planning of deflection or Asteroid Redirect missions
- What are the processes and timescales of regolith formation on fast rotators?
- Is 2011 PT a good representative of the population of asteroids with D < 100 m?

Marco Fenucci (@OnFenu) 7 / 7